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Abstract— Autonomous robots performing navigation tasks
in complex environments often face significant challenges due to
uncertainty in state estimation. In settings where the robot faces
significant resource constraints and accessing high-precision
localization comes at a cost, the planner may have to rely
primarily on less precise state estimates. Our key observation
is that different tasks, and different portions of tasks require
varying levels of precision in different regions: a robot navi-
gating a crowded space might need precise localization near
obstacles but can operate effectively with less precise state
estimates in open areas. In this paper, we present a planning
method for integrating task-specific uncertainty requirements
directly into navigation policies. We introduce Task-Specific Un-
certainty Maps (TSUMs), which abstract the acceptable levels
of state estimation uncertainty across different regions. TSUMs
align task requirements and environmental features using a
shared representation space, generated via a domain-adapted
encoder. Using TSUMs, we propose Generalized Uncertainty
Integration for Decision-Making and Execution (GUIDE), a
policy-conditioning framework that incorporates these uncer-
tainty requirements into the robot’s decision-making process,
enabling the robot to reason about the context-dependent value
of certainty and adapt its behavior accordingly. We show how
integrating GUIDE into reinforcement learning frameworks
allows the agent to learn navigation policies that effectively
balance task completion and uncertainty management without
the need for explicit reward engineering. We evaluate GUIDE
on a variety of real-world robotic navigation tasks and find
that it demonstrates significant improvement in task completion
rates compared to baseline methods that do not explicitly
consider task-specific uncertainty. Experiments, code, dataset
available at: https://guided-agents.github.io.

I. INTRODUCTION

In complex environments where robots must balance task
completion with resource usage, managing uncertainty in
state estimation becomes a critical challenge. Consider an
autonomous surface vehicle (ASV) conducting a mapping
mission in stealth-critical settings where each GPS fix risks
detection, or a ground robot operating in environments where
high-precision localization requires costly computation. In
such resource-constrained settings, the robot must not only
complete its assigned task but also carefully manage when
and where to use expensive localization operations. Impor-
tantly, constantly striving to reduce uncertainty through high-
precision localization is neither necessary nor efficient for
successful task execution. When operating in regions critical
to the task objectives or near obstacles, precise localization
becomes crucial for mission success. However, in areas less
relevant to the immediate task goals, the robot can often
tolerate higher positional uncertainty, allowing it to focus on
efficient task execution rather than achieving pinpoint accu-
racy. This scenario underscores a fundamental observation in
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Fig. 1: GUIDEd Agents in action. Top Left: The ASV is assigned a
navigation task. Top Right: GUIDE interprets the task and generates
a representation highlighting areas where the ASV needs higher
positional certainty (dark blue). Bottom: The policy executed by
the ASV. The white line represents the trajectory taken by the ASV,
the red dots indicate locations where the ASV actively reduces its
state estimation uncertainty to satisfy task-specific requirements.

robotic navigation with limited access to high-precision lo-
calization: the acceptable level of uncertainty at any location
is inherently task-specific and context-dependent.

Traditional approaches to navigation in localization-
limited environments often fall into two categories: minimiz-
ing uncertainty universally through frequent use of expensive
localization [1], [2] or enforcing fixed uncertainty thresholds
across the environment [3], [4]. While these strategies may
be effective in settings where localization resources are
abundant, they become impractical when high-precision state
estimation comes at a cost. Existing methods fail to account
for how the value of precise localization varies across
different phases of the mission. Adapting these methods
to localization-limited environments would require extensive
reward engineering to capture the complex relationship be-
tween task objectives and localization costs.

The key issue lies in the disconnect between task require-
ments and resource-constrained uncertainty management.
Current frameworks treat localization decisions indepen-
dently from task specifications, leading to either excessive
resource consumption or compromised task performance
when different regions demand different levels of certainty.

Statement of contributions: (i) TSUM: With the aim
of grounding high-level task descriptions and low-level
uncertainty handling, we propose the concept of a Task-
Specific Uncertainty Map (TSUM). A TSUM serves as an
intermediate abstraction that represents the acceptable levels
of state estimation uncertainty across different regions of
the environment for a specific task. We present a CLIP-



based approach for computing TSUMs that effectively aligns
visual environmental features with textual task specifications
in a shared embedding space. (ii) GUIDE: Building upon
TSUM, we introduce Generalized Uncertainty Integration
for Decision-Making and Execution (GUIDE), a policy-
conditioning framework that incorporates TSUMs into nav-
igation policies. The core proposition of GUIDE is that
by conditioning navigation policies on TSUMs, robots can
better reason about the context-dependent value of certainty.
(iii) GUIDEd agents: We demonstrate how GUIDE can
be integrated into a reinforcement learning framework by
adapting the Soft Actor-Critic algorithm, resulting in the
GUIDEd Soft Actor-Critic (G-SAC) method. G-SAC learns
navigation policies that effectively balance task completion
and uncertainty management without the need for explicit
reward engineering. (iv) Evaluation: We evaluate GUIDE
in real-world in-the-wild deployment using an Autonomous
Surface Vehicle (ASV) in the context of marine autonomy.
Our results show significant improvements in task perfor-
mance when compared to methods that do not explicitly con-
sider task-specific uncertainty requirements. To spur further
research, we also release the marine dataset and code.

II. RELATED WORKS

a) Uncertainty Modeling: Uncertainty management is
a fundamental aspect of robot navigation [5]. Probabilistic
techniques [6], [7] have been widely used to enable localiza-
tion in stochastic environments. However, these approaches
often treat uncertainty uniformly across the environment,
without considering how different regions may require vary-
ing levels of certainty depending on the task. Belief-space
planners framed as Partially Observable Markov Decision
Processes (POMDPs) further couple estimation with action
by optimizing over the distribution, explicitly balancing
task progress against the value of information-gathering [8],
[9]. While POMDP approximations improve scalability, they
cannot capture location- or context-dependent tolerance.

b) RL for Navigation: Reinforcement Learning (RL)
has been successfully applied to robotic navigation tasks,
enabling agents to learn navigation policies [4], [10]. While
these methods can learn effective policies in controlled envi-
ronments, they often perform suboptimally in real-world sce-
narios due to factors like partial observability and dynamic
changes [11], [12]. Recent work has focused on developing
navigation policies conditioned on specific goals [13], [14]
capable of handling objectives, adjusting the robot’s behav-
ior according to the task. These approaches often neglect
the varying importance of uncertainty management across
different tasks and environments.

c) Uncertainty-Aware RL: Incorporating uncertainty
into RL for navigation has been investigated to enhance
exploration, robustness, and safety [10]. Some approaches
introduce uncertainty penalization into the reward function
[15], [16]. Others utilize Bayesian RL methods to model un-
certainty in value estimation [17], [18]. Bootstrapped ensem-
bles maintain multiple value functions to capture epistemic
uncertainty, leading to informed exploration strategies [19],

[20]. While these methods consider uncertainty, they often
do so globally [3] across the environment and do not tailor
to specific navigation tasks or spatial regions. This uniform
treatment of uncertainty becomes particularly problematic in
resource-constrained settings, lacking mechanisms to reason
about when consuming these limited resources would pro-
vide the most value for task completion.

d) Risk-Aware Planning: Risk-aware planning intro-
duces measures to balance performance and safety by consid-
ering the risks associated with different actions [21], [22]. In
the context of RL, risk-sensitive approaches adjust the policy
to avoid high-risk actions, often through modified reward
functions or policy constraints [23], [24]. Although effective
in managing risk, they apply uniform risk thresholds and do
not adapt to the task-specific uncertainty requirements.

e) Task-Specific Navigation: Recent works proposed
large pre-trained models to interpret complex instructions
and generate corresponding navigation behaviors [25]–[27].
While these approaches enable robots to execute a wider
range of tasks, they lack a systematic method for integrat-
ing task-specific uncertainty requirements into the naviga-
tion policy. This limitation reduces their effectiveness in
localization-limited environments where the importance of
uncertainty can vary across different regions.

In contrast to prior works, we place our research at the
intersection of task-specific, resource-constrained navigation.
GUIDE addresses a specific gap in the literature: how to com-
plete navigation tasks in environments where high-precision
localization is a limited resource that must be strategically
utilized. While previous approaches either assume unlimited
access to state estimation or treat uncertainty uniformly,
GUIDE grounds task requirements, environmental features
and uncertainty into the navigation policy.

III. THE GUIDE FRAMEWORK

Problem setting: Consider a robot operating in a state
space S, where each state s ∈ S encodes the robot’s pose.
The robot can execute control inputs from a action space
A. Operating in a localization-limited environment [2], the
robot’s default state estimate is subject to uncertainty (e.g.,
communication constraints or environmental factors). The
robot can access high-precision state estimates at significant
costs—for instance, a robot conducting stealth-critical mis-
sions where each GPS fix risks detection.

We assume the availability of a visual representation of
the operating environment a priori, such as an overhead map.
This assumption is justified in many real-world applications
where geographic information systems provide knowledge of
the environment (e.g., static obstacles). A navigation task τ ,
specified in natural language, describes the robot’s objectives
and constraints with respect to environmental features.

Objective: Synthesize a navigation policy π(a | s) that
enables task completion while explicitly reasoning about the
robot’s state-estimation uncertainty u(s). The policy must
balance two competing demands: efficient task execution and
strategic uncertainty management.
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Fig. 2: GUIDE consists of two phases. (i) Pre-training: semantic and spatial embeddings are fine-tuned and aligned using a CLIP-based
model. (ii) Deployment: TSUMs are generated from task descriptions and policies are conditioned on the TSUMs to manage uncertainty.

GUIDE aims to operationalize this balance by condi-
tioning the navigation policy on a task-specific uncertainty
abstraction, enabling the robot to reason when and where to
invest in costly localization. Fig. 2 presents an overview of
GUIDE. We now detail the specifics of these components.

A. Task-Specific Uncertainty Map (TSUM)

To effectively integrate task-specific uncertainty consid-
erations into robotic navigation policies, we introduce the
abstraction of Task-Specific Uncertainty Maps (TSUMs). A
TSUM serves as an intermediate representation that bridges
the gap between high-level task specifications and low-level
uncertainty management decisions. Formally, a TSUM is a
function Uτ : L → R+ that assigns an acceptable level of
state estimation uncertainty to each location l ∈ L for a given
navigation task τ . The TSUM Uτ (l) is defined as:

Uτ (l) = wΦΦ
τ (l) + wCCτ (l) + wEE(l), (1)

where Φτ (l) quantifies the task-specific importance of lo-
cation l, Cτ (l) represents task constraints at l, and E(l)
captures environmental factors. The weights wΦ, wC , and wE
control the relative influence of each component, allowing
us to balance different aspects of the task and environment.
These weights are determined through validation on a held-
out dataset of annotated scenarios.

1) CLIP-Based TSUM Generation: To generate TSUMs
that effectively capture the relationship between visual fea-
tures and task requirements, we propose a vision-language
approach using the CLIP (Contrastive Language-Image Pre-
training) model [28]. GUIDE processes both visual and
textual inputs to produce a spatially-varying uncertainty map.

a) Pre-processing: (i) Environment representation: As
established in Section III, we assume access to a visual
representation of the environment. To process this spatial
information systematically, we discretize the continuous
space L into a grid of N image patches {I1, I2, . . . , IN},
where each patch Ij corresponds to a discrete spatial region
lj ⊂ L. The discretization parameters are chosen to balance
computational efficiency with feature preservation. (ii) Task
Processing: Given a task τ specified in natural language, we
employ a hierarchical parsing approach to extract structured
task representations. We utilize a dependency parser with a
context-free grammar [29] to decompose τ into atomic state-
ments that capture objectives and their associated constraints.
These atomic statements are organized into m specifications
{ti}mi=1 and c auxiliary specifications {ck}ck=1.

b) CLIP Encoding: We leverage CLIP’s vision-
language architecture to project both spatial and semantic
information into a shared representational space. The model
consists of two parallel encoders:

Etext : T → Rd, Eimage : I → Rd (2)

where T and I denote the spaces of tokenized text and
normalized image patches respectively, and d is chosen
to optimize the balance between representational capacity
and computational efficiency. These encoders employ self-
attention mechanisms and cross-modal transformers to gener-
ate context-aware embeddings e(text)(ti), e

(text)(ck) ∈ Rd for
textual components and e(image)(lj) ∈ Rd for spatial regions.

c) Cross-Modal Alignment: The shared embedding
space facilitates direct semantic comparison between speci-
fications and visual features through cosine similarity:

sim(t, l) = cosine
(
e(text)(t), e(image)(l)

)



This metric quantifies the semantic relevance between spatial
regions and task components, enabling the construction of
spatially-varying relevance maps. While pre-trained CLIP
provides general-purpose understanding, domain-specific ap-
plications would require additional fine-tuning (Sec. III-A.3).

2) Computing Task Relevance and Constraints: Having
established our CLIP-based pipeline, we now detail how we
compute each component of the TSUM. Using the encoder
functions defined in Equation (2), we obtain embeddings
(e(text)(ti), e

(text)(ck) ∈ Rd for text and e(image)(lj) ∈ Rd for
image patches) that capture the semantic features of both
textual descriptions and visual characteristics in a shared
d-dimensional space. This shared representation allows us
to meaningfully compare how well visual features at each
location align with the requirements expressed in the task.

a) Task Relevance Function Φτ (l): To compute the task
relevance at each location, we first calculate similarity scores
between each subtask and location

ρti(lj) = cosine
(
e(text)(ti), e

(image)(lj)
)
. (3)

These raw similarities are converted to attention weights
αi(lj) = exp

(
ρti(lj)

)
/
∑m

i′=1 exp
(
ρti′ (lj)

)
. The task rel-

evance function Φτ (lj) is then computed as a weighted sum

Φτ (lj) =

m∑
i=1

αi(lj) ρti(lj).

This formulation creates a natural prioritization mechanism–
locations that strongly match with important subtasks receive
higher relevance scores. The attention weights αi ensure
that the most pertinent subtasks for each location dominate
the relevance calculation, while the weighted sum combines
evidence from all subtasks proportional to their importance.

b) Constraint Function Cτ (l): For each constraint ck,

ρck(lj) = cosine
(
e(text)(ck), e

(image)(lj)
)
.

Constraint attention weights are computed as βk(lj) =
exp

(
ρck(lj)

)
/
∑c

k′=1 exp
(
ρck′ (lj)

)
. The final constraint

function aggregates these similarities

Cτ (lj) =

c∑
k=1

βk(lj) ρck(lj).

Higher values of Cτ (lj) indicate locations where constraints
are relevant and uncertainty management is critical.

c) Environmental Factors E(l): While CLIP embed-
dings capture visual features, certain navigation-relevant at-
tributes may not be directly observable from imagery. We
incorporate these factors through a vector of environmental
features env features(lj), which encodes spatial properties.
These features are mapped to a scalar value through

E(lj) = w⊤
env env features(lj) + benv,

where wenv and benv are parameters optimized during training.
The final TSUM value at each location is computed by

combining these components according to Equation (1). The
complete pipeline is illustrated in Fig. 3.

3) Implementation Recipe: We now present the practical
details of our domain-specific implementation.

a) Dataset: Our dataset consists of 2500 annotated
overhead images (2000 images for training and 500 for
validation) collected from real-world environments and high-
fidelity simulations, covering a diverse range of navigation
scenarios. Each image is discretized to 224 × 224 pixels
at 0.5 meters per pixel resolution, chosen to align with
CLIP’s architecture. Each patch is annotated with D =
{(Ij , lj , ytj , ycj , fj)}Nj=1, where Ij is the image patch, lj rep-
resents location coordinates, ytj and ycj are binary relevance
labels for a predefined set of subtasks and constraints, and
fj contains environmental features (e.g., bathymetry).

b) CLIP Fine-tuning: We adopt a selective fine-tuning
approach to adapt the pre-trained CLIP (ViT-B/32) model
while preserving its general vision-language understanding.
Specifically, we freeze the first six transformer layers to
maintain CLIP’s foundational cross-modal understanding,
while fine-tuning the remaining six layers to adapt to
navigation-specific concepts. We optimize the loss function:

LCLIP = Lcont. + λalignLalign,

Lcont. = − log(exp(sim(ti, l
+
i )/τ)/

∑
j exp(sim(ti, lj)/τ))

is the standard CLIP contrastive loss, and Lalign =
∑

j ∥yj −
σ(sim(t, lj)/ζ)∥2 is an alignment loss that encourages con-
sistency between expert labels and embedding similarities.
ζ is a temperature parameter set to 0.07, and σ is the
sigmoid function. We freeze the first six transformer layers
of CLIP and fine-tune the remaining layers for 10 epochs
using AdamW optimizer with a learning rate of 1e-5.

c) Training Procedure: The training process involves:
(i) Fine-tune CLIP using LCLIP as described above.

(ii) Train wenv and benv by minimizing Lenv =
∑

j ∥E(lj)−
êj∥2, where êj represents ground truth annotations.

(iii) Optimize the weights wΦ, wC , and wE using a validation
set of TSUMs LTSUM =

∑
j ∥Uτ (lj)− Uτ

ref(lj)∥2.
The reference TSUMs (Uτ

ref) were generated using a com-
bination of automated and manual annotation processes. We
utilized a high-fidelity Unity-based simulation environment
to automatically generate initial uncertainty requirements
based on task execution traces. We employ early stopping
based on validation performance with a patience of 5 epochs.
Data augmentation includes random rotations and flips of
the image patches. The pipeline is implemented in PyTorch
using TorchScript for optimal GPU utilization. Training
is performed on distributed NVIDIA A100 GPUs using Py-
Torch’s DistributedDataParallel, with environment
simulation and data generation parallelized across multiple
nodes to maximize throughput.

B. Conditioning Navigation Policies Using TSUMs

To enable robots to manage uncertainty in a task-aware
manner, we propose conditioning the navigation policy on
the Task-Specific Uncertainty Map (TSUM). To condition
the policy, we augment the state representation (s̃) to include
both the acceptable uncertainty levels from the TSUM and
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the robot’s current estimation of its state uncertainty:

s̃ = [s, Uτ (s), u(s)],

where s is the original state representing the robot’s observa-
tion of the environment, Uτ (s) is derived from the TSUM,
and u(s) is the robot’s current state estimation uncertainty.

By conditioning the policy π(a|s̃) on the augmented state
s̃, the agent makes decisions based not only on the envi-
ronmental state but also on the acceptable, actual and future
uncertainty levels at each location. This allows the agent to
adjust its actions to meet the task-specific uncertainty re-
quirements. The RL problem is formulated in the augmented
state space. The objective is to learn an optimal policy
π∗(a|s̃) that maximizes the expected cumulative reward:

π∗ = argmax
π

Eπ

[ ∞∑
t=0

γtR(st, at, τ)
∣∣∣ s̃0] , (4)

where γ ∈ [0, 1) is the discount factor, and R(st, at, τ) is
the task-specific reward function. Standard RL algorithms
can be employed to solve this optimization problem in the
augmented state space. In the next section, we show how a
standard RL algorithm can be adapted using our framework.

1) GUIDEd SAC: While any RL algorithm can be used
to learn the optimal policy, we adopt the Soft Actor-Critic
(SAC) algorithm [30] due to its sample efficiency and
robustness. Our adapted version, referred to as GUIDEd SAC,
conditions the policy and value function on the augmented
state s̃. In the SAC framework, the objective is to maximize
the expected cumulative reward augmented by an entropy
term, which encourages exploration:

J(π) = Eπ

[ ∞∑
t=0

γt (R(st, at, τ) + αH(π(·|s̃t)))
∣∣∣ s̃0] ,

where H(π(·|s̃t)) = −Eat∼π(·|s̃t) [log π(at|s̃t)] is the en-
tropy at state s̃t, and α is the temperature parameter balanc-
ing exploration and exploitation. GUIDEd SAC maintains
parameterized function approximators for the policy πθ(a|s̃)
and the soft Q-value functions Qϕ1

(s̃, a) and Qϕ2
(s̃, a),

where θ and ϕi denote the parameters of the policy and value
networks, respectively. The soft Q-value networks Qϕi(s̃, a)
are updated by minimizing the soft Bellman residual:

LQ(ϕi) = E(s̃t,at,rt,s̃t+1)∼D

[
(Qϕi

(s̃t, at)− yt)
2
]
, (5)

where D is the replay buffer, and target yt is computed as:

yt = rt+γ

(
min
i=1,2

Qϕ̄i
(s̃t+1, at+1)− α log πθ(at+1|s̃t+1)

)
,

with at+1 ∼ πθ(·|s̃t+1) and Qϕ̄i
being the target Q-value

networks with delayed parameters for stability. The policy
network πθ(a|s̃) is updated by minimizing:

Lπ(θ) = Es̃t∼D
[
Eat∼πθ(·|s̃t) [α log πθ(at|s̃t)−Qϕ(s̃t, at)]

]
,

(6)
where Qϕ(s̃t, at) = mini=1,2 Qϕi(s̃t, at). The temperature
parameter α is adjusted by minimizing:

L(α) = Eat∼πθ(·|s̃t)
[
−α

(
log πθ(at|s̃t) + H̄

)]
, (7)

where H̄ is the target entropy. Algorithm 1 summarizes the
GUIDEd SAC algorithm.

1: Initialize policy network πθ(a|s̃), Q-value networks
Qϕ1 , Qϕ2 , target Q-value networks Qϕ̄1

, Qϕ̄2
, tem-

perature parameter α, and replay buffer D.
2: for each environment interaction step do
3: Obtain st, Uτ (st), u(st).
4: Form augmented state s̃t = [st, U

τ (st), u(st)].
5: Sample action at ∼ πθ(·|s̃t).
6: Execute action at, observe rt and st+1.
7: Compute s̃t+1 = [st+1, U

τ (st+1), u(st+1)].
8: Store transition (s̃t, at, rt, s̃t+1) in replay buffer.
9: for each gradient step do

10: Sample minibatch of transitions from D.
11: Update Qϕi by minimizing LQ(ϕi) (Eq. (5)).
12: Update πθ by minimizing Lπ(θ) (Eq. (6)).
13: Adjust α by minimizing L(α) (Eq. (7)).
14: Update target Q networks: ϕ̄i ← τϕi + (1− τ)ϕ̄i.

Algorithm 1: GUIDEd SAC Algorithm



Tasks Metric SAC SAC-P B-SAC CVaR RAA HEU G-PPO G-SAC

Goal reaching: waypoint TCR (%) (↑) 67.2% 82.1% 75.9% 68.8% 35.3% 71.3% 83.8% 95.7%
visit [coordinate] Reward (avg) (↑) 186.2 260.4 249.5 184.8 26.9 176.1 319.0 429.2

Goal reaching: context TCR (%) (↑) 68.9% 84.3% 74.2% 66.8% 32.7% 73.5% 81.7% 91.5%
navigate to dock Reward (avg) (↑) 144.1 241.8 189.2 134.6 53.5 137.5 308.3 400.2

Avoid tasks TCR (%) (↑) 71.3% 83.2% 79.6% 78.4% 51.3% 62.4% 89.6% 87.4%
avoid the central fountain Reward (avg) (↑) 177.8 199.2 277.6 220.4 107.8 174.4 437.6 480.2

Perimeter tasks TCR (%) (↑) 44.3% 51.6% 56.3% 41.6% 39.8% 49.6% 74.9% 85.6%
go around the left fountain Reward (avg) (↑) 84.4 132.8 170.4 32.8 111.2 146.8 449.2 599.6

Explore tasks TCR (%) (↑) 88.6% 92.4% 87.6% 84.9% 71.3% 88.7% 93.8% 97.3%
explore top-right quadrant Reward (avg) (↑) 486 474 526 449 402 537 548 595

Restricted areas TCR (%) (↑) 70.8% 82.1% 78.4% 71.2% 51.1% 63.9% 90.0% 88.6%
visit dock, avoid top-right quadrant Reward (avg) (↑) 266.4 306.8 307.2 269.6 201.4 261.2 570.0 634.6

Multi-goal tasks TCR (%) (↑) 31.3% 42.9% 37.7% 30.9% 19.5% 42.1% 72.8% 81.7%
combination of tasks (see Fig. 3) Reward (avg) (↑) 124.4 135.2 122.4 129.2 100.4 155.2 423.6 510.4

TABLE I: Task-completion rate (TCR) and mean episode reward for GUIDE vs baselines, averaged over 50 trials per task type. Task
completion criteria: (i) goal-reaching tasks: within a 1.5m radius of the target, (ii) perimeter/exploration tasks: remain within a 3.5 m
corridor of the path, (iii) avoid tasks: keep a 3 m distance. TCR is the fraction of these criteria met.

IV. EXPERIMENTS

Motivating scenario: Consider a stealth mission where an
autonomous surface vehicle (ASV) must navigate through
previously unexplored waters. The ASV can either rely on
noisy sensors or activate high-precision GPS. Each GPS fix
incurs a penalty because it increases the chance of detection,
yet completing the mission requires maintaining sufficient
localization accuracy in critical regions.

A. Experimental Setup
1) Environment: The ASV operates in an open lake char-

acterized by environmental variability and human-induced
disturbances. The environment features fountains that serve
as obstacles and introduce unmodeled water disturbances that
create both physical challenges for navigation and contribute
to the overall uncertainty in state estimation.

2) Hardware Setup: Our experiments utilize the
SeaRobotics Surveyor Autonomous Surface Vehicle (ASV),
which is equipped with a GPS, an IMU, and a EXO2
multiparameter water quality sonde. The GPS provides
precise positioning, while the IMU assists with motion
tracking and orientation. The YSI EXO2 sonde, primarily
used for environmental monitoring, contributes to the overall
state estimation by providing additional context. The action
space of the ASV is defined as a = (λ, α, η), where λ is the
propulsion torque, α denotes the steering angle, and η is a
discrete variable indicating the mode of position estimation.

3) Position Estimation Modes: To represent the opera-
tional challenges of managing uncertainty during navigation,
we model two modes of position estimation [2]:

(i) Noisy Localization: By default, the ASV estimates
its position using the IMU and EXO2 sensors, which
results in a less accurate position estimate. This mode
represents the low-cost but high-uncertainty estimate.

(ii) Exact Localization: The ASV can request exact posi-
tion data from GPS. This incurs a higher resource cost,
leading to a reduced overall mission reward.

The reward structure is designed to encourage task com-
pletion while balancing the efficient management of posi-
tional uncertainty, without biasing the results in favor of
GUIDE compared to the baselines. The reward function for
task execution, rtask, incentivizes mission completion, while
each use of exact position estimation incurs a penalty cexact to
reflect its associated cost. Conversely, noisy estimation incurs
a smaller penalty cnoisy, encouraging the ASV to balance
accuracy needs with operational efficiency.

B. Baselines and Ablations

We compare GUIDE against baselines that handle uncer-
tainty differently. They interpret tasks using the same parser,
converting them into algorithm-specific representations:

(i) Standard RL without TSUMs (SAC): We train SAC using
the original state s to assess the importance of TSUMs.

(ii) GUIDEd PPO (G-PPO): We implement GUIDEd PPO
[31], incorporating TSUMs and uncertainty, to examine
the effect of the underlying RL algorithm.

(iii) RL with Uncertainty Penalization (SAC-P): We modify
the reward function in SAC to penalize high uncertainty:
RSAC-P = Rbase − ζu(s), where Rbase includes task and
localization costs and ζ is a weighting factor. This tests
traditional reward shaping versus GUIDE’s approach.

(iv) Bootstrapped Uncertainty-Aware RL (B-SAC): We im-
plement Bootstrapped SAC [32] to estimate epistemic
uncertainty which guides exploration.

(v) Heuristic Policy (HEU): A hand-crafted policy where
the agent plans using SAC but switches to exact position
estimation near obstacles or task-critical regions.

(vi) Risk-Aware RL (CVaR): We use a CVaR-based RL
algorithm [33], optimizing a risk-sensitive objective to
focus on worst-case scenarios.

(vii) Uncertainty-Aware Planning (RAA): We employ Risk-
Aware A* [34] that minimize collision probabilities,
aiming for overall uncertainty minimization.
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Fig. 4: Comparison of navigation trajectories for the task: Start at the dock, navigate around the central
fountain, then around the left fountain, and finally around the right fountain. Red dots mark loca-
tions where it reduced uncertainty, pink diamonds indicate collision points and the green rectangle marks the dock.

C. Results

The performance of GUIDE and the baseline methods is
summarized in Table I. Our results show that GUIDE con-
sistently outperforms all baselines across all task categories.

1) Impact of TSUMs: To assess the significance of
TSUMs, we compare the standard SAC to G-SAC. As shown
in Table I, conditioning on TSUMs significantly enhances
performance across all tasks. Without TSUMs, SAC cannot
manage positional uncertainty in a task-specific manner,
leading to suboptimal decisions and lower rewards. To illus-
trate the effect of TSUM integration, we show in Fig. 4 the
trajectories with and without TSUMs. We observe that SAC
often overuses high-precision localization in areas where it
is unnecessary, incurring additional costs without significant
benefits. In critical regions requiring precise navigation, SAC
fails to reduce uncertainty, leading to collisions. In contrast,
the G-SAC uses TSUMs to adapt its uncertainty manage-
ment, switching to GPS in areas where the TSUM indicates
low acceptable uncertainty, enabling the ASV to navigate
safely around obstacles and complete tasks efficiently.

2) Effect of RL Algorithm: We investigate the impact of
the underlying RL algorithm by comparing G-PPO to G-
SAC. This difference in the performance can be attributed to
factors inherent to the algorithms. G-SAC, based on the SAC
framework, is an off-policy method that leverages entropy
regularization to encourage exploration while maintaining
stability. Its off-policy nature allows for efficient sample
utilization, which is particularly beneficial in continuous
action spaces and when data collection is costly or limited. In
contrast, PPO relies on proximal updates to prevent large pol-
icy shifts, using a clipped objective function. While PPO is
stable, it can be less sample-efficient, as it requires new data
for each policy update and may not explore as effectively in
complex environments. Our empirical results suggest that the
off-policy efficiency and exploration capabilities of G-SAC
make it better suited for navigation tasks. The entropy term
in G-SAC encourages the agent to consider a wider range of
actions, enabling it to discover more optimal strategies for
managing uncertainty in a task-specific context.

3) Comparison with Baselines: Standard RL methods like
SAC and SAC-P lack task-specific uncertainty management.

GUIDEd SAC

SAC-P

Fig. 5: Trajectories for Start and end at the dock. Go
around the perimeter and visit (x,y). Green and
blue rectangles denote the dock and the coordinates (x,y).

SAC-P penalizes high uncertainty uniformly, resulting in
overly conservative behavior where precision is unneces-
sary and insufficient caution in critical regions, ultimately
leading to lower performance. B-SAC estimates epistemic
uncertainty but fails to adapt to task-specific requirements,
leading to inefficient exploration. Risk-Aware RL methods
like CVaR are uniformly risk-averse, missing opportunities
for calculated risk-taking that could improve task success.
RAA aims to minimize overall uncertainty without con-
sidering task context, often generating inefficient paths.
HEU switches to exact localization near obstacles, but lacks
GUIDE’s adaptability, failing to adjust to sudden changes in
uncertainty requirements.

4) Behavior of GUIDEd Agents: Analyzing the specific
task shown in Fig. 5, GUIDEd agents strategically adjust
their reliance on precise position estimation versus noisier
estimates. In areas where the TSUMs indicate high precision



is necessary–such as navigating near obstacles or close to the
perimeters (Fig. 5, highlighted in yellow)–the ASV opt for
exact positioning despite the higher operational cost. Con-
versely, in less critical regions (Fig. 5, highlighted in purple),
they rely on less precise, cheap estimates. This adaptability
allows GUIDEd agents to manage uncertainty more effi-
ciently than baselines, resulting in better task completion
rates. Although not perfect, occasionally missing sections
of the perimeter (Fig. 5, highlighted in black), GUIDEd
agents significantly outperform baselines with engineered
rewards like SAC-P. Baselines frequently fail to complete
tasks safely, colliding with obstacles (Fig. 5, pink diamond)
or take inefficient paths (Fig. 5, highlighted in black).

V. CONCLUSION

We introduce GUIDE, a framework for limited-
localization environments that integrates task-specific uncer-
tainty requirements into robotic navigation policies. Central
to our approach is the concept of Task-Specific Uncertainty
Maps (TSUMs), which represent acceptable levels of state
estimation uncertainty across regions of the environment
based on the given task. By conditioning navigation policies
on TSUMs, we enable robots to reason about the context-
dependent importance of certainty. We demonstrated how
GUIDE can be incorporated into RL frameworks by aug-
menting the state representation with TSUMs. Specifically,
we adapted the Soft Actor-Critic (GUIDEd SAC) to operate
in this augmented state space. Our experiments demonstrate
GUIDE’s effectiveness in real-world deployments across pre-
viously unseen environments, showing significant improve-
ments in task completion rates compared to baselines that do
not explicitly consider task-specific uncertainty.
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