APPENDIX

This supplementary material provides:
o Additional Experimental Results: Extended evaluations of GUIDE on various tasks.
o Implementation Details: Descriptions of the dataset, model architectures and hyperparameters for GUIDE and all baselines.

I. ADDITIONAL EXPERIMENTAL RESULTS

(a) "Go to point [80,90] and then go (b)
around the central fountain and return
to the dock."

"Go to [80,60] and then go to [80,
20] and then go to [80, 70] and finally
return to the dock. This task has to be

completed by avoiding the right half of
the area."

(©) "Go to [40,60] while avoiding the (d)

"Explore the top half of the
left half of the environment."

environment."

(e) "Navigate the perimeter of the bottom
half of the lake."

(f) "Go to [40,60]."
Fig. 1: Illustrations of various navigation tasks performed by GUIDEd SAC in the environment. In all images, the light blue

line represents the trajectory, red dots indicate areas where uncertainty was reduced, the green rectangle represents the dock,
and brown rectangles represent waypoints that need to be reached. The specific tasks are described below each figure.

Note: the coordinates mentioned in the illustrations and the examples are dummy values to maintain anonymity.

A. Implementation Details

1) Task Categories and Examples: The tasks in the dataset are grouped into six categories, each designed to test specific
aspects of navigation and uncertainty management. Below, we describe each category in detail and provide representative
examples.

a) Goal Reaching: Waypoint: This category involves tasks where the ASV is instructed to navigate to specific coordinates.
The focus is on reaching designated points in the environment.

Examples:

e Navigate to waypoint (12.0, -7.5).

e Proceed to the coordinates (8.5, 15.0).

e Go to the location at (5.0, -10.0).

b) Goal Reaching: Contextual Landmarks: This category includes tasks where the ASV is instructed to navigate to
locations identified by contextual landmarks rather than explicit coordinates. This tests the ability to interpret semantic
information and associate it with spatial positions.

Examples:

e Go to the dock.

e Proceed to the central fountain.

e Navigate to the area in front of the left fountain.

c) Avoidance Tasks: These tasks instruct the ASV to avoid certain points or areas, emphasizing obstacle detection and
path planning to circumvent specified locations.

Examples:

e Avoid the coordinates (10.0, -5.0).

e Steer clear of the submerged rock at (3.5, 4.0).

d) Perimeter Navigation Tasks: In this category, the ASV is tasked with navigating around the perimeter of a specified
area. This requires maintaining a certain distance from boundaries.

Examples:

e Navigate around the perimeter of the bottom-right quadrant.

e Circumnavigate the central fountain.

e Traverse the boundary of the entire lake.

e) Exploration Tasks: These tasks involve exploring a specified area for a fixed duration of 5 minutes, testing the ASV’s
ability to stay withing an area and cover parts.

Examples:

e Explore the top-half of the lake.

e Conduct an exploration of the top-right quadrant.

f) Restricted Area Navigation: Tasks in this category require the ASV to navigate while avoiding specified regions.

Examples:

e Go to waypoint (6.0, -3.0) while avoiding the right half of the lake.

e Navigate to the right fountain, avoiding the exclusion zone.

e Proceed to the dock without passing through the left half of the lake.

2) Natural Language Processing and Embedding Generation: To process the natural language task descriptions, we utilized
a fine-tuned RoBERTa language model, which captures contextual nuances and effectively handles synonyms and varied
phrasings. This enables the model to interpret different expressions of similar tasks, ensuring robustness to linguistic variations.
For example, phrases like * ‘proceed to’’, ‘*‘navigate to’’,and ‘‘go to’’ arerecognized as equivalent in intent.

The semantic embeddings generated by RoBERTa are paired with spatial embeddings derived from the associated coordinates
or landmarks, allowing the model to learn meaningful associations between language and location. This approach ensures that
even when new tasks are presented with different wording or synonyms, the model can generalize and generate appropriate
Task-Specific Uncertainty Maps.

3) Dataset and Data Processing: The dataset used for training our TSUM generation model consists of overhead imagery
collected from various marine environments and simulation scenes, carefully curated to capture a wide range of operational
scenarios. The data collection process spanned multiple weather conditions to ensure robustness and generalizability of the
trained model.

For the labeling process, we employed experts with experience in autonomous navigation. These experts followed an
annotation protocol to maintain consistency across the dataset. The protocol involved examining each 224x224 pixel patch of
overhead imagery and assigning binary labels indicating relevance to predefined subtasks and constraints. The labeling criteria
were established through iterative refinement to ensure practical applicability.

To address class imbalance issues in our dataset, we implemented a comprehensive sampling strategy. Many critical navigation
scenarios, such as complex docking maneuvers or navigation around certain obstacles, were naturally underrepresented in the
raw data collection. We addressed this through strategic oversampling of these crucial but rare scenarios. Specifically, patches
containing these underrepresented classes were duplicated in the training set, while maintaining cross-validation splits to
prevent overfitting. For negative examples, we employed a systematic sampling approach, randomly selecting patches that
domain experts had deemed irrelevant to specific subtasks or constraints, while ensuring a balanced representation across
different environmental conditions.

The environmental variations in our dataset were curated to capture the diverse conditions encountered in real-world marine
operations. Our collection includes patches from both real-world lake environments and high-fidelity simulated scenarios. The
real-world data encompasses variations in weather conditions (clear, overcast, and light rain), lighting conditions (morning,
midday, and evening), and seasonal changes affecting water conditions. Shoreline features vary from natural boundaries to
man-made structures, and obstacle density ranges from sparse open waters to crowded marina environments. The simulated
data complements these real-world scenarios by providing additional coverage of rare but critical scenarios that are difficult to
capture in real-world data collection.

For data storage and organization, we implemented a metadata management system. Each image patch is stored in a
georeferenced index using a custom CSV format, which maintains associations between image patches, their geographical
coordinates, and corresponding labels. This schema ensures efficient retrieval during training and enables seamless integration
with existing robotic navigation systems. The metadata includes essential information such as timestamp, environmental
conditions, and annotation confidence scores from domain experts.

Our data augmentation pipeline was designed to enhance model robustness while preserving critical visual cues for marine
navigation. The primary augmentations include random rotations (in 90-degree increments) and horizontal flips, which reflect
the rotational invariance of navigation tasks while maintaining the natural appearance of water features. Notably, we deliberately
avoided color jittering and intensity transformations, as these could distort important water-related visual cues that are crucial
for accurate navigation. The augmentation parameters were tuned through extensive experimentation to find the optimal balance
between increasing data diversity and maintaining task-relevant features. All image patches undergo consistent preprocessing
to ensure uniformity in the training data. This includes standardization to zero mean and unit variance, computed across the
training set, and resizing to maintain consistent spatial resolution across different source imagery. The preprocessing pipeline
also includes automated quality checks to identify and filter out patches with excessive noise, sensor artifacts, or poor visibility
conditions that could negatively impact model training.

4) Technical Infrastructure and Hardware Setup: Our technical infrastructure was designed to efficiently handle the
computational demands of processing large-scale overhead imagery and training complex neural networks. The foundation
of our data processing pipeline centers on the conversion of geographical coordinates to discrete 224x224 pixel patches, which
serve as the basic unit of analysis for our TSUM generation system. The coordinate-to-patch mapping system employs a
gridding algorithm that subdivides large overhead maps into a regular grid of fixed-size patches. Each patch is assigned center
coordinates that correspond to real-world geographical positions. The mapping process utilizes a custom spatial indexing
structure that enables efficient lookup of relevant patches given any arbitrary location in the operational space. To handle edge
cases where locations fall between patch boundaries, we implemented a nearest-center assignment strategy that ensures every
point in the operational space maps to exactly one patch while maintaining spatial continuity.

To maximize processing efficiency, we developed a parallelized data generation pipeline. The system utilizes a custom-
built multithreaded tiling script that leverages all available CPU cores to concurrently process large imagery datasets. This
parallelization is implemented using Python’s multiprocessing library, with careful attention to memory management to prevent
resource exhaustion when handling particularly large maps. The tiling process is coordinated by a master thread that manages
work distribution and ensures balanced load across all available processors. Each worker thread independently processes
assigned regions of the input imagery, generating patches and associated metadata in parallel.

The runtime environment is built on Ubuntu 20.04 LTS with CUDA 11.8 and cuDNN 8.7, optimized for deep learning
workloads. We utilize Docker containers to ensure consistency across different compute nodes and to simplify deployment.
The container images are based on NVIDIA’s NGC PyTorch container, customized with additional dependencies required for
our specific workload. This containerized approach ensures reproducibility and enables easy scaling across different hardware
configurations. Data movement between storage and compute nodes is optimized using a custom data loading pipeline built
on top of PyTorch’s Dataloader class. We implemented prefetching mechanisms that load and preprocess data for upcoming
batches while the current batch is being processed on the GPUs. This approach effectively hides I/O latency and ensures
near-continuous GPU utilization. The data loading pipeline includes automatic checkpointing to enable recovery from system
failures without losing progress.

The typical processing workflow for a complete dataset involves approximately 2-3 hours of initial data tiling and prepro-
cessing, followed by 10 epochs of model training. The training process is distributed using PyTorch’s DistributedDataParallel,
with gradient synchronization optimized for our specific network architecture and batch sizes. Our implementation achieves

approximately 71% GPU utilization during training, with the remaining overhead primarily attributed to necessary data loading
operations.

Resource monitoring and system health checks are performed using a combination of Prometheus for metrics collection
and Grafana for visualization. This monitoring infrastructure allows us to track system performance, identify bottlenecks,
and optimize resource utilization in real-time. Additionally, we maintain comprehensive logs of all processing steps, enabling
detailed analysis of system performance and facilitating debugging when necessary.

A crucial component of our technical infrastructure is our high-fidelity simulation environment, built using Unity3D
(2022.3.16f1) in conjunction with ROS2 Humble. This simulator serves as a vital tool for both data generation and policy
validation. The Unity environment provides physically accurate water dynamics for fluid simulation, capable of modeling
complex wave patterns, water resistance, and hydrodynamic forces. We implemented custom shaders to accurately render
water surface properties, ensuring visual fidelity crucial for training vision-based navigation systems.

The simulator is tightly integrated with ROS2 through a custom bridge that enables bidirectional communication between
Unity and ROS2 nodes. This integration allows for seamless transfer of sensor data, control commands, and state information.
We implemented the full suite of sensors found on our physical ASV, including simulated GPS (with configurable noise patterns),
IMU (with drift characteristics matching real hardware), and cameras (with accurate lens distortion and environmental effects).
The simulator also includes detailed models of environmental factors such as wind effects, current patterns, and varying lighting
conditions.

For training data generation, the simulator can be run in a distributed headless manner across instances, each generating
different scenarios and environmental conditions. We used an off-shelf scenario generation system that creates diverse training
situations, including varying obstacle configurations, weather conditions, and traffic patterns. The simulator supports both
synchronous and asynchronous operation modes, allowing for rapid data collection when generating training datasets and
real-time operation when validating policies.

B. Hyperparameters

Hyperparameter Name Brief Explanation Value

TSUM Aggregation

We Weight for subtask relevance function &7 (1) 0.5
we Weight for constraint relevance C" (1) 0.3
we Weight for environmental factors £ (1) 0.2

CLIP Fine-Tuning

CLIP embedding dimension d Output dimension of ViT-B/32 encoders (text/image) 512

Number of frozen layers Initial layers in CLIP left frozen to retain general cross-modal 6
knowledge

Fine-tuning epochs Epochs used to adapt the unfrozen CLIP layers 10

Learning rate for CLIP LR for training the unfrozen CLIP layers 1x107°

Alignment weighting Aqiign Weight on additional alignment loss Lajign 1.0

Contrastive temperature ¢ Temperature hyperparameter for CLIP contrastive loss 0.07

Reinforcement Learning (SAC)

Discount factor ~y Discount factor in the RL objective 0.99

Initial temperature o Initial entropy temperature in SAC 0.2

Target entropy H Target policy entropy term in SAC -2

Soft target update 7 Polyak averaging coefficient for target Q-networks 0.005

Replay buffer size |D| Maximum capacity of the experience replay buffer 1 x 10°

Batch size Number of samples per RL training batch 256

Learning rate for policy network LR for optimizing the policy g 3x 1074

Learning rate for Q-value networks LR for optimizing the Q-value functions Q, 3x107*

Learning rate for temperature o LR for adjusting the SAC temperature 3x 1074

Policy network architecture MLP for 7 with hidden layers and activation 2 layers, 256 units each, ReLU
Q-value networks architecture MLP for Q4,, identical structure 2 layers, 256 units each, ReLU
Maximum steps per episode Upper bound on steps in each training episode 1000

TABLE I: Hyperparameters for the CLIP-based TSUM generation and SAC policy learning.

Hyperparameter Name

Brief Explanation

1. Standard RL without TSUMs (SAC, Ablation 1)

State representation
2. GUIDEd PPO (G-PPO, Ablation 2)

Policy optimization algorithm

Clip ratio €

Number of epochs per update

Learning rate for policy and value networks
Generalized Advantage Estimation lambda Agag
Batch size

State representation

3. RL with Uncertainty Penalization (SAC-P)

Penalty weight ¢

State representation

4. Bootstrapped Uncertainty-Aware RL (B-SAC)

Number of bootstrap heads

Bootstrap sampling probability
Uncertainty estimation method
State representation

5. Heuristic Policy (HEU)
Switching threshold distance
Planning algorithm

Exact position estimation mode
State representation

6. Risk-Aware RL (CVaR)

Risk level acvar
CVaR optimization method

State representation
7. Uncertainty-Aware Motion Planning (RAA)

Acceptable collision probability peotision
Risk assessment horizon

The agent uses only the original state s

Proximal Policy Optimization (PPO) is used instead of SAC
Clipping parameter for PPO policy updates

Number of epochs per policy update iteration

Learning rate for updating network parameters

Smoothing parameter for advantage estimation

Number of samples per training batch

Augmented state § = [s, U7 (s), u(s)]

Weighting factor for uncertainty penalization in the reward
function Rsac.p = Rpase — Cu(s)
Original state s

Number of Q-value networks used to estimate epistemic uncer-
tainty

Probability of selecting each head during training

Standard deviation across bootstrap heads

Original state s

Distance to obstacles or task-critical regions at which the agent
switches to exact position estimation

Base planning using SAC
The mode 7 used for precise localization when close to obstacles
Original state s

Conditional Value at Risk (CVaR) level, determining the quan-
tile of worst-case outcomes considered

Optimization of the expected value over the worst acvar fraction
of outcomes

Original state s

Threshold probability of collision acceptable during planning
Number of steps ahead considered for risk assessment

Value

0.2
10
3x107%
0.95
64

0.4

10

0.8

3.5 meters

n=1

0.05

CVaR objective

0.01
50

TABLE II: Hyperparameters for the baseline and abalation methods. Unless specified, methods use the same hyperparameters
as in GUIDEd SAC (see Table I). Only differences from GUIDEd SAC are listed for each method.

	Additional Experimental Results
	Implementation Details
	Task Categories and Examples
	Natural Language Processing and Embedding Generation
	Dataset and Data Processing
	Technical Infrastructure and Hardware Setup

	Hyperparameters

